数位动态规划
source:http://www.cnblogs.com/itlqs/p/5935308.html
这一篇要说的数位DP是一道最简单的数位DP:http://acm.hdu.edu.cn/showproblem.php?pid=2089
不要62
Problem Description
杭州人称那些傻乎乎粘嗒嗒的人为62(音:laoer)。
杭州交通管理局经常会扩充一些的士车牌照,新近出来一个好消息,以后上牌照,不再含有不吉利的数字了,这样一来,就可以消除个别的士司机和乘客的心理障碍,更安全地服务大众。
不吉利的数字为所有含有4或62的号码。例如:
62315 73418 88914
都属于不吉利号码。但是,61152虽然含有6和2,但不是62连号,所以不属于不吉利数字之列。
你的任务是,对于每次给出的一个牌照区间号,推断出交管局今次又要实际上给多少辆新的士车上牌照了。
Input
输入的都是整数对n、m(0<n≤m<1000000),如果遇到都是0的整数对,则输入结束。
Output
对于每个整数对,输出一个不含有不吉利数字的统计个数,该数值占一行位置。
Sample Input
1 100
0 0
Sample Output
80
Author
qianneng
Source
Recommend
lcy
试想:我们如果能有一个函数count(int x),可以返回[0,x]之间符合题意的数的个数。那么是不是直接输出count(m)-count(n-1)就是答案?
好,那么下面我们的关注点就在于怎么做出这个函数。我们需要一个数组。(dp原本就是空间换时间)
我们设一个数组f[i][j],表示i位数,最高位是j的数,符合题意的数有多少个。比如f[1][2]=1; f[1][4]=0;
f[2][6]=8(60,61,63,,65,66,67,68,69).
我们先不关注这个f有什么用,我们先关注f本身怎么求。首先f[1][i]=0(if i==4),f[1][i]=1(if i!=4) (0<=i<=9)。这一步是很显然的,那么根据这个题的数据范围,只需要递推到f[7][i]就够用了。那么稍微理解一下,可以想出递推式:
f[i][j]=
if (j==4) f[i][j]=0
else if (j!=6) f[i][j]=Σf[i-1][k] (k=0,1,2,3,4,5,6,7,8,9)
else if (j==6) f[i][j]=Σf[i-1][k] (k=0,1,3,4,5,6,7,8,9)
上面的式子也是很显然的,如果觉得不显然可以这样想:i位数,最高位是j的符合条件的数,如果j是4,肯定都不符合条件(因为题目不让有4),所以直接是0;如果j不是6,那么它后面随便取,只要符合题意就可以,所以是f[i-1][k],k可以随便取的和;如果j是6,后面只要不是2就行,所以是f[i-1][k],k除了2都可以,求和。
这里要说明一下,认为00052是长度为5,首位为0的符合条件的数,052是长度为3首位为0符合条件的数。
那么现在我们已经得到了f数组,再重申一下它的含义:i位数,最高位是j的数,符合题意的数有多少个。
现在我们就要关注怎么利用f数组做出上面我们说的那个函数count(int x),它可以求出[0,x]中符合题意的数有多少个。
那么我们做这样一个函数int solve(int x) 它可以返回[0,x)中符合题意的有多少个。那么solve(x+1)实际上与count(x)是等价的。
那么现在问题转化成了:小于x,符合题意的数有多少个?
很简单,既然小于,从最高位开始比,必定有一位要严格小于x(前面的都相等)。所以我们就枚举哪一位严格小于(前面的都相等)。
假设我们现在把x分成了a1,a2,...,aL这样一个数组,长度为L,aL是最高位。
那么结果实际上就是这样:长度为L,最高位取[0,aL-1]的所有的符合题意数的和;再加上长度为L-1,最高位取aL,次高位取[0,aL-1-1]的所有符合题意数的和;再加上……;一直到第一位。
上面有一句话之所以标粗体,是因为这句话并不是对的,但是为了好看,就先这样写着。因为我们还需要考虑这种情况:最高位aL如果是4,那么这句话直接就可以终止了,因为粗体这句话前面的那句话“最高位取aL”是不能成立的。还要考虑这种情况:最高位aL如果是6,那么这里并不是能取[0,aL-1-1]的所有(不能取2)。加上这些条件之后就很严谨了。
把上面的汉字对应到题目里,就是我们前面求出来的f[L][0..aL-1] f[L-1][0..aL-1-1],所以稍加思索之后就能写出程序了。
#include<cstdio>
const int maxn=10;
long long f[maxn][10];
void getdp()
{
f[0][0]=1;
for (int i=1;i<10;i++)
{
for (int j=0;j<10;j++)
{
if (j==4) f[i][j]=0;
else if (j==6)
{
for (int k=0;k<10;k++)
f[i][j]+=f[i-1][k];
f[i][j]-=f[i-1][2];
}
else
{
for (int k=0;k<10;k++)
f[i][j]+=f[i-1][k];
}
}
}
}
int a[maxn];
long long solve(int n)
{
a[0]=0;
while (n)
{
a[++a[0]]=n%10;
n/=10;
}
a[a[0]+1]=0;
long long ans=0;
for (int i=a[0];i>=1;i--)
{
for (int j=0;j<a[i];j++)
if (j!=4 && !(a[i+1]==6 && j==2))
ans+=f[i][j];
if (a[i]==4) break;
if (a[i+1]==6 && a[i]==2) break;
}
return ans;
}
int main()
{
int n,m;
getdp();
while (scanf("%d %d",&n,&m)==2 && (n||m))
{
long long k1=solve(m+1);
long long k2=solve(n);
//printf("::%d,%d::",k1,k2);
printf("%I64d\n",k1-k2);
}
return 0;
}