概览
Kruskal算法是一种用来寻找最小生成树的算法,由Joseph Kruskal在1956年发表。用来解决同样问题的还有Prim算法和Boruvka算法等。三种算法都是贪婪算法的应用。和Boruvka算法不同的地方是,Kruskal算法在图中存在相同权值的边时也有效。
简单描述
- 记Graph中有v个顶点,e个边
- 新建图$$Graph{new}$$,$$Graph{new}$$中拥有原图中相同的e个顶点,但没有边
- 将原图$$Graph$$中所有e个边按权值从小到大排序
- 从权值最小的边开始遍历每条边 直至图$$Graph$$中所有的节点都在同一个连通分量中
- if 这条边连接的两个节点于图$$Graph_{new}$$中不在同一个连通分量中
- 添加这条边到图$$Graph_{new}$$中
图例
图示 | 备注 |
---|---|
![]() |
|
![]() |
将所有的边按长度排序,用排序的结果作为选择的依据; |
![]() |
在剩余的边中寻找;找到CE,权值为5; |
![]() |
找到DF、AB、BE,权值分别为6、7、7; |
![]() |
继续选择,BC或EF(尽管现在长度为8的边是未选择的最小边,但已经连通);最后剩余EG、FG。 |
简单证明Kruskal算法
对图的顶点数n做归纳,证明Kruskal算法对任意n阶图适用。
归纳基础
n=1,显然能够找到最小生成树。
归纳过程
假设Kruskal算法对n≤k阶图适用,那么,在k+1阶图G中,我们把最短边的两个端点a和b做一个合并操作,即把u与v合为一个点v',把原来接在u和v的边都接到v'上去,这样就能够得到一个k阶图G'(u,v的合并是k+1少一条边),G'最小生成树T'可以用Kruskal算法得到。
我们证明T'+{<u,v>}是G的最小生成树。
用反证法,如果T'+{<u,v>}不是最小生成树,最小生成树是T,即W(T)<W(T'+{<u,v>})。显然T应该包含<u,v>,否则,可以用<u,v>加入到T中,形成一个环,删除环上原有的任意一条边,形成一棵更小权值的生成树。而T-{<u,v>},是G'的生成树。所以W(T-{<u,v>})<=W(T'),也就是W(T)<=W(T')+W(<u,v>)=W(T'+{<u,v>}),产生了矛盾。于是假设不成立,T'+{<u,v>}是G的最小生成树,Kruskal算法对k+1阶图也适用。
由数学归纳法,Kruskal算法得证。
模板
时间复杂度:O(log2e)
typedef struct
{
char vertex[VertexNum]; //顶点表
int edges[VertexNum][VertexNum]; //邻接矩阵,可看做边表
int n,e; //图中当前的顶点数和边数
}MGraph;
typedef struct node
{
int u; //边的起始顶点
int v; //边的终止顶点
int w; //边的权值
}Edge;
void kruskal(MGraph G)
{
int i,j,u1,v1,sn1,sn2,k;
int vset[VertexNum]; //辅助数组,判定两个顶点是否连通
int E[EdgeNum]; //存放所有的边
k=0; //E数组的下标从0开始
for (i=0;i<G.n;i++)
{
for (j=0;j<G.n;j++)
{
if (G.edges[i][j]!=0 && G.edges[i][j]!=INF)
{
E[k].u=i;
E[k].v=j;
E[k].w=G.edges[i][j];
k++;
}
}
}
heapsort(E,k,sizeof(E[0])); //堆排序,按权值从小到大排列
for (i=0;i<G.n;i++) //初始化辅助数组
{
vset[i]=i;
}
k=1; //生成的边数,最后要刚好为总边数
j=0; //E中的下标
while (k<G.n)
{
sn1=vset[E[j].u];
sn2=vset[E[j].v]; //得到两顶点属于的集合编号
if (sn1!=sn2) //不在同一集合编号内的话,把边加入最小生成树
{
printf("%d ---> %d, %d",E[j].u,E[j].v,E[j].w);
k++;
for (i=0;i<G.n;i++)
{
if (vset[i]==sn2)
{
vset[i]=sn1;
}
}
}
j++;
}
}